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Uniform flow in curved, wide, erodible-bed channels is formulated on the basis of the 
conservation of flux of moment-of-momentum, to obtain relations for the vertical 
distributions of radial-plane velocity and radial shear stress, The expression for the 
radial stress exerted on the bed is utilized in a force-equilibrium analysis of the moving 
bed layer to obtain relations for the average transverse slope of the bed and for the 
radial bed profile. The reduction of primary bed shear stress due to the net radial 
transport of streamwise momentum toward the outer (concave) bank is then 
calculated, by introducing the derived expressions for the velocity components into 
the momentum equation for the primary-flow direction. It is found that the stress 
reductions in deep, narrow channels can exceed 50 yo. Bed profiles and velocity 
distributions measured in natural and laboratory streams are found to be in good 
conformity with those calculated from this moment-based theory. 

1. Introduction 
Even casual observers of Earth’s geological features soon notice that natural 

alluvial streams are seldom straight along reaches of more than a few channel widths. 
Hydraulic engineers and other students of fluvial processes have long recognized 
meandering to  be not only an intriguing geometrical and kinematical feature of rivers, 
but also one that has major effects on their sediment-transport and roughness 
characteristics. Fluid mechanicians appreciate further that  the internal structure of 
flow in meandering rivers is as fascinating as their migrating, serpentine channel 
lineament. Especially engaging is the interaction between the vertical profile of the 
primary flow and the centrifugal forces resulting from the flow’s curvature. The 
principal result is the well-known spiralling or secondary flow in planes normal to 
the channel axis. Because the bed-surface sediment of a stream actively transporting 
its bed material is in a quasifluidized state, even the relatively small radial component 
of the bed shear stress and small near-bed velocities produced by the secondary flow 
transport sediment toward the inner (convex) banks until the bed becomes inclined 
such that the gravity and shear forces exerted radially along the bed on the moving 
bed-load particles are in balance. The resulting greater depth near the outer banks 
increases the primary-flow velocities there, which in turn intensifies the erosive attack 
on the banks and also undermines them. Both of these effects aggravate bank erosion 
and thereby promote further growth of the meanders. 

Although the seemingly disproportionate effects of channel meandering on river 
flow have been appreciated for several decades, attempts to develop a mathematical 
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model for the secondary flow and its interactions with the primary flow and sediment 
motion have met with only limited success. The principal stumbling block 
encountered arises from the radial shear-stress force exerted on an elemental control 
volume a t  any elevation (the vertical distribution of which is the principal 
determinant of the radial-plane velocity profile) being the small difference between 
two much larger quantities : the centrifugal body force and the radial pressure force 
resulting from superelevation of the water surface. It is important to  bear in mind 
that even though the integrals of these two forces over the depth are very nearly 
equal, locally they are grossly out of balance. The radial gradient of pressure resulting 
from the transverse inclination of the free surface is very nearly constant over the 
depth, while the centrifugal force varies from zero a t  bed level to a maximum near 
the free surface. In  fact, i t  is precisely the difference between the distributions of these 
two nearly equal forces that is responsible for the secondary flow. Moreover, the 
secondary flow (or, viewed differently, the vertical gradient of the primary velocity) 
causes the radial water-surface slope to  be greater than i t  would be for a flow with 
vertically uniform primary velocity (which would not produce a secondary current). 
This is because the secondary flow produces an inward radial shear force on the bed ; 
the corresponding radially outward force on the flow must be balanced by part of 
the radial pressure-gradient force. Thus, just in determining the distributions of the 
three principal radial forces - pressure, shear and centrifugal - exerted on the flow, 
one is faced with the problem of having two of them - shear and pressure - unknown, 
even if the velocity distribution of the primary flow and hence also the centrifugal- 
force distribution are known. Clearly, to  proceed with the calculation of these forces, 
another relation, in addition to the equation expressing the balance of radial forces, 
is needed. Further physical considerations or assumptions must be introduced to 
calculate the distribution of the radial velocity. 

I n  the analytical model developed here for vertical distributions of radial shear 
stress and velocity, and radial distributions of depth and streamwise velocity, an 
expression for the conservation of moment-of-momentum is the additional relation 
utilized to close the formulation of the radial forces. This aspect of the analysis is 
similar, for example, to use of equations expressing balances of forces and moments 
to calculate the supporting forces on a loaded, simply supported beam. One of the 
two unknown forces does not appear in the formulation of moments about one of t6e 
supports, and therefore the other can be calculated directly. A roughly parallel 
approach is followed in the present analysis. Formulation of the flux of moment- 
of-momentum about the longitudinal axis at the bed surface yields an expression for 
the radial pressure gradient. The radial momentum equation then is used to obtain 
the vertical distribution of radial shear stress. The transverse bed profile is determined 
from consideration of the force balance for the moving bed-load particles. The 
radial-velocity profile is calculated by introducing into the radial momentum equation 
a linear primary-shear-stress distribution and the eddy-viscosity distribution 
obtained from the power-law distribution utilized for the primary velocity. Finally, 
the radial distribution of local depth corresponding to  the bed profile is used in the 
calculation of the transverse distribution of depth-averaged streamwise velocity. The 
analysis is limited to  a channel of constant centreline radius, which is a good 
approximation to  extended reaches of bows of many strongly meandering natural 
channels. Extension of the analytical model to weakly meandering channels is 
developed in Falcon Ascanio’s (1979) thesis. 

Some of the background literature on this problem is cited in connection with 
development of the present model. For a more complete review, reference is made 
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FIQURE 1. Definition sketch for flow in an alluvial-channel bend. 

to the surveys by Callander (1968, 1978), to Falc6n Ascanio’s (1979) thesis, and to 
Odgaard’s (1981 ) paper on river-bend topography. 

2. Analysis 
2.1. General 

The idealized channel treated here has infinite length, constant width, an erodible 
sediment bed, and banks with a common centre of curvature. The central, longitudinal 
channel axis at the level of the bed has constant mean slope S,, and describes a helix 
in space which traces a circle of radius r, when projected onto a horizontal plane. 
The flow is conveniently described in cylindrical coordinates : the vertical z-axis passes 
through the curvature centre of the channel and is positive in the direction opposite 
to gravity; in planes perpendicular to the z-axis, locations are specified by radial 
distance r from the z-axis, and polar angle 8, as shown in figure 1. In order for the 
radial slopes of the bed and water surface to be constant along the channel, the local 
streamwise slope S(r)  of both must be 

(1)  
r 

r 
S = S,C.  

The flow is treated as uniform in the sense that its properties are invariant along 
any helix with constant radius r and slope S. The analysis will be restricted further 
to a central region of the channel, delineated in figure 1 ,  throughout which the vertical 
velocity is much smaller than the characteristic velocities in the r -  and &directions. 
The channel slope S,  will be limited to small values, so that forces and velocities 
parallel to the underlying bed-surface helices may be taken to be equal to those along 
the 0-coordinate. Finally, the restriction d / r  < 1 will be imposed, for reasons that 
become apparent in the next section. 
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2.2 .  Vertical distribution of radial shear stress 

Calculation of the radial shear stress a t  any elevation requires, first, that  the radial 
water-surface slope and associated pressure gradient be determined, for use in 
calculation of the vertical distribution of radial shear stress from the radial 
momentum equation. The radial water-surface slope will be calculated from a 
formulation, simplified by means of an ordering analysis, of the conservation of flux 
of moment-of-momentum for the control volume shown in figure 1 ,  which extends 
over the whole flow depth and has base dimensions Ar and A s  = rA8. For this control 
volume, the equation of moment-of-momentum about an axis r = constant a t  the 
bed surface is 

+ -- rd2 pu2qdq - puwdq = 0, ( 2 )  
rd ’”[ ar s: 1 s: 

where, in addition to the quantities defined in figure 1 ,  p = pressure, 
q = (z-h)/d, p = fluid density, u( r ,v ) ,  w( r ,q )  and w( r ,  q) = velocities in r - ,  8- and 
z-directions respectively, and T J r ,  q )  = ~ ~ , . ( r ,  q) = shear stress acting on surfaces 
normal to r-  and x-axes respectively. The fourth term in ( 2 )  is zero for uniform flow. 
The remaining terms will be ordered by takingv = O( V ) ,  where V(r) = depth-averaged 
flow velocity, u = O(u(r, 1)  = Urn), and the z-direction velocity w = O(w,,, = Wm). 
Relative to the second term, the fifth and sixth terms are 0 (Vrn /V2)  and 
O( (r/d) (Urn/ V )  ( Wrn/ V)) respectively. Yen (1965) concluded from his measurements 
of flow in curved channels that  Urn/ V = O(d/r). This result is suggested also by the 
analysis of Zimmermann & Kennedy (1978, equation (7 ) ) ,  which shows the ratio of 
radial to streamwise components of bed shear stress to be O(d/r). If z = O(d), the 
continuity equation 

(3) - + - + - + - = 0, 
r ar as az 

in which av/as is zero for the uniform flow being considered, requires that 
Wm/U = O(d/r). Because Um/V = O(d/r), i t  follows that WJV = O(d/r)2. It is 
concluded then that the fifth and sixth terms of ( 2 )  are both O(d/r) relative to the 
centrifugal-force (second) term, and can be dropped. 

The shear-stress (third) term of ( 2 )  may be ordered by utilizing the equality of shear 
stresses and the Boussinesq shear-stress relation for turbulent flow, and treating the 
eddy viscosity eo as constant over the depth : 

u au av  aw 

The eddy viscosity may be expressed as a product of the shear velocity u* and depth ; 
therefore 

(5) [ 7t-z dq = o(aPu* U) > 

where a z eO/u* d (01 = 0.079, according to Hinze 1975). From (5) i t  follows that 
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in which f = Darcy-Weisbach friction factor. Both a and (Qf)i are O(lO-l), and 
therefore the third term of (2) is two orders of magnitude smaller than the second 
and may be disregarded. Because p = O(pVz), the first and second terms are of the 
same order. Incorporation of the simplifications resulting from the foregoing ordering 
analysis reduces (2) to 

j l$Tdj  = p f f y d q .  o r  (7) 

In  the central region, where Urn/ V Q 1 and Wm/ V Q 1 ,  i t  is reasonable to assume 
that the vertical distribution of p is hydrostatic : 

where g = gravitational acceleration and H is defined in figure 1 .  It has been 
demonstrated by Yen (1965) that the deviation of the pressure from the hydrostatic 
distribution is O ( d / r )  or smaller in even moderately curved open-channel flow. The 
primary-flow velocity v ( r ,  3) will be expressed by the power law 

where l /n is an exponent which is related to the Darcy-Weisbach friction factor by 

1 1  
- = -(if)+, 
n K  

where K = von Karman's constant. The background of this relation is reviewed by 
Zimmermann & Kennedy (1978). Karim (1981) examined (10) critically, verified i t  
with laboratory data, and formulated the dependence of K on sediment concentration ; 
this refinement will not be included in the present analysis. Substitution of (8) and 
(9) into (7)  yields n+l V2 

n rg 
H'(r)  = --. 

By means of an ordering analysis similar to the one developed above and guided 
in some measure by his experimental results, Yen (1965) simplified the radial 
momentum equation for curved open-channel flow to 

It is noteworthy that rZr makes a first-order contribution to the radial-momentum 
relation, but the corresponding vertical shear stress T,, makes only a higher-order 
contribution to the moment-of-momentum equation if the moment axis is taken a t  
bed level to avoid inclusion of the bed shear stress. This is, in fact, the motivation 
for utilizing the moment relation: i t  avoids specification of 7,, at the bed in the 
determination of H .  Substitution of (9) into (12), integration of the resulting 
expression from arbitrary 71 to 7 = 1 ,  and application of the boundary condition 
T , ~ (  1) = 0 yields 

1 v z  (n+ 1 ) 2  

rg n(n+2) 
~ ( 7 - l ) - - ~ ( 7 ' 2 + n ' ' ~ - l )  . 
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2.3, Transverse bed projile and depth distribution 

Equilibrium of the transverse bed profile, h(r ,  0) in figure 1,  and of the depth d ( r )  are 
attained when the radial-plane forces acting on the moving bed-load particles sum 
to zero. Bed-load movement will be treated as occurring in a layer of thickness Yb, 
as shown in figure 1 .  The shear forces exerted on this agitated, somewhat-dilated, 
moving layer are in reality diffuse ‘seepage’ forces caused by the flow within the 
layer’s interstices, and any net force, however small, in the radial direction will 
produce transverse motion of the bed-load particles. Therefore, radial equilibrium will 
be reached when the local bed inclination p(r )  is such that 

(14) 

where p = porosity of the bed-layer; Ap = p s - p ;  and ps = density of bed particles. 
In  the development of his detailed, computer-simulation model of sediment transport 
in streams, Karim (1981) concluded from inferential evidence that 

7 0 7  = 7 , w ( r 9  O )  = Y b ( l - P )  APgsinp, 

where D,, = median bed-material size; u*(r) = local shear velocity = V(g f )*; and 
u * ~  = critical shear velocity for incipient particle motion. In  terms of the Shields 
parameter 0, u*, may be expressed as 

u * ~ =  ( y  g-D 5 0 ) (  6 ,  

which defines 6. Substitution of (13), ( l l ) ,  (15) and (16) into (14), and incorporation 
of the simplification of (10) to Nunner’s (1956) relation (Hinze 1975) 

n = f9, (17)  

which corresponds to K = 0.354, yields 
d (86)* 1 +fi 

S, = s i n p  = -FD---- 
r 1-p1+2f4’ 

where V F -  
- (9(AP/P) D,o)i. 

sin p = - . 

The traverse bed profile may be calculated by neglecting the effect of H on d ( r ) ;  

dd 
dr 

then 
(19) 

The velocity V to be used in (18) is obtained by incorporating ( 1 )  into the  local 
expression of the Darcy-Weisbach friction factor : 

where 708 = longitudinal shear stress acting on the bed, and 6(r)  = bed-shear-stress 
reduction factor defined by 

which takes into account the transport of primary-flow momentum out of the central 
region to the vicinity of the outer bank, where it is balanced by bank shear. An 
analysis of S is developed in $2.6. Substitution of (19), (20) and (1)  into (18) and 

7 0 8 ( 4  = SSpgd(r),  (21 1 
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integration of the resulting expression for ddldr yields 

1 1  1 (88): 1+fi 8Scrcg6 4 
~-~=[$z-$]GW( f s  7 Ap D.50 ) '  

where the subscript c denotes the centreline values used in setting the integration 
constant. Elimination of 6Sc from (22 )  by means of (20) and replacing V by its 
section-averaged value v for the whole flow, to facilitate verification, leads to 

- 

V F -  where 

- d A P I P )  Q O P .  

Utilization of the mean velocity for the whole cross-section in the calculation of 
d ( r )  from (23), or in calculating an average value of ST from (18 )  by replacing FD 
with F,,, neglects the effects of the variation of V across the channel, but nevertheless 
yields satisfactory results, as is demonstrated in $3. 

Equations ( 2 0 )  and (23 )  give the radial distribution of mean velocity for uniform 
flow. In  practical applications, it  generally suffices to take 6 = 1 .  

2.4. Vertical distribution of transverse velocity 

Calculation of the radial-plane velocity will incorporate the following assumptions. 
(i) The primary-flow shear stress 7,e is linearly distributed, and aTr0/ar makes a 

negligible contribution to the streamwise force balance : 

T,e(r, 7) = Toe(1-7) = +gdfl(1-7). (24 1 
(ii) The eddy viscosity is isotropic and is given by 

(iii) Because of the isotropy of e, the radial velocity and shear stress are related 

Substitution of ( 9 )  and (24 )  into (25 )  yields 

which, when substituted along with (13 )  into ( 2 6 ) ,  leads to 

For steady uniform flow, u must satisfy 

There is no assurance that (28) will satisfy this requirement if H given by ( 1 1 )  is 
utilized, because of errors inherent in the Boussinesq eddy-viscosity model and other 
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assumptions that have been made in the derivation of the relation for u. Therefore 
the integral of (29) will be evaluated for arbitrary H ,  denoted by HL and expressed 
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as 
n + l  V2 

HL(r) T-- 
n ry ' 

where T = H L / H ,  and H is given by (11). Substitution of (28)  and (30) into (29), 
utilization of the expansion , 

and term-by-term integration of the resulting series yields 

Equation (29) is satisfied if T is given by 

Incorporation of (17),  ( 2 0 )  and (33)  into (32)  gives 

1 - _ _  u r  = 8 : { (  n+ 1 ) 4  [ 1 
V d  j = o  n2(n+2)  ( 3 / % + 2 + j ) ( 3 / n + l + j )  ( l / n + l + j ) ( l / n + j )  

E G(7 ,  n ) .  (34)  

Equation (34) is shown in figure 2 for four values of n which span the range from 
very rough ( n  = 2.5, f = 0.16) to relatively smooth ( n  = 10, f = 0.01) channels. It is 
noteworthy that, for all but very low values of n,  the velocity profiles are nearly linear 
except near the bed, with u = 0 at about mid-depth. 

2.5. A remark on H and HL 
I n  the foregoing analysis, two expressions were derived for the transverse slope of 
the water surface : ( 1  l ) ,  and (30)  and (33) .  Corresponding to each of these is a different 
value of 7,,(0), the radial component of the bed shear stress. Their ratio T = H L / H  
given by ( 3 3 )  has a nearly constant value of 0.9 for 2 < n < 8. I n  view of the near 
equality of HL and H ,  why was i t  necessary to utilize different values in the 
formulations of 7,, and of u(7) ? The problem is one of sensitivity, as will now be 
demonstrated. Eauation (13)  gives 

\ I "  

1 V 2  ( n + 1 ) 2  
rg n ( n + 2 )  7Or(r) T ~ , ( V ,  0) = pgd -~ - H , (35) 

which together with ( 1  1 )  for H shows that 70r is the difference between two small 
quantities multiplied by a large one, pgd. Therefore small errors in the expression for 
the transverse water slope produce large errors in rOr. For example, the ratio of 70r 

given by (35) with H replaced by HL obtained from (30) and (33) ,  to 70r yielded by 
(35)  and ( 1 1 )  varies widely with n,  from about 0.6 for n = 2 to nearly 0.2 for n = 8. 
Because the radial bed slope and thus also the bed profile depend directly on 70r,  as 
is shown by ( l a ) ,  it is important in their derivation to have an accurate estimate of 
rOr - one whose calculation avoids use of such artifices as the Boussinesq relation, and 
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FIGURE 2. Distribution of radial-plane secondary-flow velocity given by (34). 

instead directly utilizes a mechanics principle such as conservation of moment of 
momentum. The effect of the radial water-surface slope on u(q) calculated from the 
Boussinesq relation may be examined by substituting (26) into (12) and treating 6 

as constant, say c0, which results in 

a2u gd2 v2 
ip = t,(F -4 

Equation (36) shows that a2u/aq2, and hence u(q), also is very sensitive to the small 
difference between two nearly equal quantities multiplied by a large one. Accordingly, 
only a very small adjustment in the radial water-surface slope is required to  
compensate for the effects on u of the assumptions made in its calculation, and 
thereby to permit u to satisfy the continuity requirement (29). But this small 
adjustment in H - amounting to  only about 10 yo, as just noted - has a major effect 
on rOr, as (35) demonstrates. 

2.6. Secondary-$ow effects on  7,e and v 

In  a laterally non-uniform curved flow, the secondary current produces a net radial 
transport of streamwise (&direction) momentum out of the central region, which in 
turn reduces T , ~ ,  and in so doing modifies v ( r ,  q )  (or n). It was anticipation of this 
effect which prompted incorporation of the factor S(r) into the shear-stress expressions 
(20) and (21). Calculation of 6 and the secondary-flow effect on v(q) proceeds from 
the &direction momentum equation with rr8 neglected, 

Multiplication of (3) by v, addition of the result to (37), integration of the new relation 
from q to 1, and imposition of the boundary condition 7,e(r, 1 , O )  = 0 gives 
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where S = -aH/as. The z-velocity w is evaluated from the continuity equation, (3), 
the relation, for u, (32) and the identities 

a7 - 
ar d2 

- d ah/& - ( z  - h) ad/& - -  - 

and, similarly, 

The result is 
d dd aH dd 

w ( r , y )  = - - + - + d =---- 
[ r  dr ( V  dr  6 d r  

Substitution of (9), (34) and (41) for v, u and w, along with 

a v 2  s a v 2  - - - _ _  
as d a7 

into (38) yields 

d d d V  dd6 {[z V dr &&.][G(nj7)71'nd7 
-- - (1-7)-646-n(n+ 1)  -+2-+4----- 
P9SD r 

[z d d V  dd6] 
V dr 6 d r  Joq } + -+-+3 711n G(n,7)d7 7 (43) 

where G is defined by (34). 
The first term on the right-hand side of (43) is the linear shear-stress distribution, 

and the second term expresses the shear-stress reduction due to  the transverse 
gradient of lateral flux of streamwise momentum. In the calculation of rzo i t  is 
assumed that the as/& term is negligible in comparison with the other derivative 
terms in brackets. Substitution of (18) for ddldr and of (20) for V then permits 
calculation of the shear stress at any location. The bed-shear-stress reduction factor 
6, introduced in (20) and (21), is obtained by letting 7 = 0 in (43). To gain some idea 
of its magnitude, a representative constant value of 6 for the whole central region, 
say 8, will be determined. For this calculation it is appropriate to replace V and d 
by their section-averaged values v and d ,  after carrying out the substitutions and 
taking the derivatives in (43); and to take r = rc .  The result is 

where RT is obtained from (18) by replacing d and V by d a n d  r. The integral of (44) 
was evaluated numerically, with the result shown in figure 3. Values of 8 for some 
field and laboratory flows are presented in $3. 

The effect of the secondary flow on the primary-flow velocity distribution may be 
estimated by substituting (17) into (20) and replacing 6 by 8. If V is considered to 
be constant, 7 is increased, as 8-4, which corresponds to  the velocity profile becoming 
blunter. This is the observed effect of seconday flow on v(7) (Falc6n Ascanio 1979). 
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FIGURE 3. Result of the numerical evaluation of G(n,  7) $ I n  dq, where G is given by (34) s: 
3. Verification 

Data utilized in the verifications reported here are summarized in table 1 .  Falc6n 
Ascanio ( 1979) presents additional comparisons of measured and computed 
quantities. 

3.1. Bed topography 
Zimmermann (1974) and Zimmermann & Kennedy (1978) reported the results of 
experiments conducted in three concentric, 60 cm wide, circular-planform flumes with 
a central angle that approached 2 R .  Two different sediments, with median diameters 
of 0.21 mm and 0.55 mm, were used. Longitudinal bed profiles were measured at 1 1  
different radii, and the transverse bed profiles obtained from them for numerous 
cross-sections in the reaches of fully developed flow were plotted and averaged. The 
transverse profiles were found to be slightly convex upward, as illustrated in figure 
4. Mean transverse bed slopes, averaged across numerous sections for each run, were 
then computed. Figure 5 shows the transverse slopes gT so determined, plotted in 
the format of (18) based on cross-section averaged flow properties and the bed-section 
friction factor (Vanoni 1975). Excellent agreement between measured and computed 
values is obtained if (80)4/(1-p) = 1.3. If the limiting value (for fully turbulent 
boundary layers) of the Shields parameter 0 = 0.06 is adopted, the resulting porosity 
is p = 0.47, a not-unreasonable value for the agitated, moving bedload particles. The 
computed profile for Zimmermann’s (1974) run no RII-13 show in figure 4 was 
obtained from (23), using these values of 0 and p .  The centreline depth d, = 9.66 cm 
utilized in computing the profile was obtained by equating the reported depth, 
10.1 cm, to  the mean depth 2 calculated by integration of d given by (23) across 

where 
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E 
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v 0 2  
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0 
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FIGURE 4. Transverse bed profiles measured in Zimmermann's (1 974) 
run RII-13, and computed from (23). 
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D, (mm) 
- r c  (cm) 0.21 0.55 

- 

180 0 0 

330 

- 
255 A A 8 -  
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6 t  

0 1 2 3 4 5 6 7 8 9  

FIGURE 5. Comparison of (1  8) and Zimmerman & Kennedy's (1978) 
measured transverse bed slopes. 

and ri and ro = radii of the inner and outer banks respectively. Calculation of the 
relation between 2 and d,  in this way is consistent with the measurement procedure 
that was uscd. Falcon (1978) describes calculation of 2 in a way that is consistent 
with conservation of bed-material volume in a curved channel. The friction factor 
utilized, fb = 0.165 for this flow, is the value for the bed section obtained from the 
sidewall-correction procedure (Vanoni 1975, p. 152). The measured and computed 
profiles are in excellent agreement. The bed-shear-stress reduction factor obtained 
from (44) for this flow is 8 = 0.43, which shows that in this relatively narrow channel 
the secondary current produced a major reduction in the bed shear. 

Figure 6 compares measured and computed transverse bed profiles for a Missouri 
River section (Falc6n Ascanio 1979). I n  computing the profile, dwas taken to  be equal 
to d,, because of the difficulty of determining rc for a wide natural stream, and of 
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FIGURE 6. Transverse bed profile measured in Missouri River (Falcon Ascanio 1979), and those 
computed from (18) (----) and (23) (-). 
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the insensitivity of d ,  to rc (see (45)). Included in figure 6 is the mean bed profile given 
by (18), which also is seen to give quite good results. Equation (44) gives 8 = 0.97 
for this relatively wide, shallow flow, demonstrating the bed shear stress a t  any r in 
the central region of this natural channel is nearly equal to the local value of pgdS. 
Other comparisons of measured and computed bed profiles yielded conformities as 
good as those demonstrated in figures 4 and 6. I n  evaluating data from natural 
streams, in which the flow is seldom steady for appreciable periods, there is always 
uncertainty about the equilibrium of the bed topography. Moreover, the bed-material 
size often varies widely across a section, often by a factor of five or more. In  view 
of these difficulties, it is suggested that, in the calculation of bed topography by means 
of (18) and (23), averaged (across channel sections, and along subreaches that are 
sufficiently short that  r ,  is practically constant) values of d a n d  v be used, and that 
the median diameter of the material that  can be moved by the flow be utilized for 
D50. Furthermore, for most natural-stream situations, the refinement given by (23) 
is probably not justified; a straight-line profile with slope S ,  given by (18) and passing 
through d = d a t  r = r ,  is generally as accurate as the field data warrant, and perhaps 
within the reproducibility of bed topography of natural streams with their vagaries 
of discharge and bed-sediment characteristics. 

3.2. Velocity distributions 
It is very difficult to obtain reliable data on u(7, r )  in erodible-bed channels, because 
of the small values of the secondary-flow velocities, and of the problems posed by 
the moving sediment and the continuous bed changes attendant to migration of bed 
forms. Therefore the two measured profiles obtained by Kikkawa, Ikeda & Kitagawa 
(1976) from uniform flow in a circular-planform rigid channel were utilized in the 
verification of (34), with the results shown in figure 7 .  Kikkawa et al. developed an 
analytic model for u(7), which can be seen in their paper also to yield generally 
satisfactory results except near the bed, where it does not satisfy the no-slip 
condition. Comparisons presented by Falc6n Ascanio (1979) of (34) with the rigid, 
sinuous-channel data on transverse-velocities reported by Yen (1 965) also demon- 
strate very satisfactory agreement. 

Transverse distributions of V ,  the depth-averaged streamwise velocity, in erodible- 
bed channels are somewhat easier to measure than radial-velocity distributions. 
Velocity data obtained by Onishi (1972) a t  the apex cross sections in two of his 
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FIQURE 7 .  Secondary-flow velocity profiles measured by Kikkawa et al. (1976) 
and computed from (34). 

rigid-bank erodible-bed meandering-channel flows were used to  validate the distri- 
bution of V obtained from (20) and (23). The average friction factors f used in the 
computations were obtained from the reported mean values of velocity, depth and 
slope for the flows, and the Darcy-Weisbach relation in the form 

Note that computation off from (46), which assumes 6 = 1, and of the corresponding 
n from (17), computation of 8 from (44) for this n, and use of 8 and f in (20) to  
determine V ( r )  is slightly inconsistent. Falc6n Ascanio ( 1979) recommends iteration 
between (20) with V = v, (44) and (17) to  obtain consistent values of n, f and 8. 
However, the convergence is quite rapid, and the effects on the computed V(r )  
and u(7) are not great. The computed and measured distributions of V ( r )  shown in 
figure 8 agree quite well except near the banks, where V must tend to  zero. 

4. Concluding remarks 
It must be borne in mind that the model developed here is strictly valid only for 

uniform, curved-channel flows. However, the available experimental data on flows 
in strongly curved channels (Zimmermann 1974 ; Zimmermann & Kennedy 1978 ; 
Odgaard & Kennedy 1982) indicate that they are characterized by relatively small 
phase shifts or lag distances between local sccondary-flow properties or bed topography 
and local channel curvature. Therefore application of the present model utilizing local 
channel and flow characteristics in non-uniform flows, as was done in the foregoing 
comparison with Onishi's (1972) data, will generally yield satisfactory results. 
However, in the case of flow in weakly meandering sinuous channels, as investigated 
by Gottlieb (1976) and Falc6n Ascanio (1979), the phase shift between local channel 
curvature and secondary-flow strength approaches in. 

The analytical model developed here is valid only for the central regions of 
curved-channel flows, which generally extend to  about one local depth from the bank. 
In the near-bank regions, the flow becomes strongly three-dimensional and heavily 
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FIGURE 8. Comparison of Onishi’s ( 1  972) measured transverse distributions of depth-averaged 
velocity and those computed from (20) and (23). 

influenced by local bank characteristics (erodibility, slope, roughness, etc.). Analysis 
of the flow and sediment transport in these regions is correspondingly more difficult 
than for the central region, and likely must await  availability of better experimental 
data for its guidance. 

The analysis presented here was largely developed in the course of the Ph.D. thesis 
research of the first author. Further work was done after his departure from The 
University of Iowa under the sponsorship of the U.S. Army Corps of Engineers 
Waterways Experiment Station (Contract DACW-39-80-C-0129). The analysis was 
completed and the manuscript prepared under support provided by the National 
Science Foundation (Grant CEE-8023003). 
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